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Quasi-arithmetic mean

Quasi-arithmetic mean is defined For any continuous strictly
monotone function f: I — R (I — an open interval). Define a
quasi-arithmetic mean AU UoZ, I™ — I by

A[f]( ( Zf az) )

where n € N and a € I™.

Pawel Pasteczka (UP)
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Calculus of quasi-arithmetic mean

Let k € N and a € R™. Let us denote the arithmetic mean of a
by @.
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Auxiliary Results
@000

Calculus of quasi-arithmetic mean

Let k € N and a € R™. Let us denote the arithmetic mean of a
by @.

Let S(I) be a family of C? functions defined on an interval I,
with nowhere vanishing first derivative and the second
derivative with [locally| bounded variation.

Roughly: smooth enought.
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Calculus of quasi-arithmetic mean

Theorem 1 (|Pasteczka, 2016|, Lemma 4.1)

Let I be an interval, f € S(I). For a given vector a € I" for
some n € N one has

'@

AW(a) =@ + 1 Var(a) 0

+ Ry(a) + Rj(a),

where

1 SN

Ry(a) := - (@) ;/a (a; — t)%df"(t),

o [ (50 = FAN@) ()
Rye) = | TGk

dt.
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Calculus of quasi-arithmetic mean

Let
i) = { e s |Ir"/fl, < K};
SLir(1) .= {f eS(I): fis Lipschitz};
SEP(I) = SMP(1) N Ske(D).
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Calculus of quaSI-arlthmetlc mean

1 n
|Rf(a)| < T xp(|| /] Zlai —al®,
=il

|R}(a)] < (A7) (a) —a)? - exp(|| "/ f']])
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Calculus of quasi-arithmetic mean

o e/ X o =l
i=1

|R}(@)] < (A¥)a) — @)% - exp([|7"/1'],)-

Lemma 2 ([Pasteczka, 2016|, Lemma 4.3)

For every f € S1(I),

3+ Te
6

‘Am (a) — E‘ < (max a — min a)?.
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[ Jolele]

Let I be an interval, f, g € Si(I) and a € I* for some k € N.
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[ Jolele]

Let I be an interval, f, g € Si(I) and a € I* for some k € N.
o 6|A[f](a)—A[“7](¢z)| 1< %(emaxa—mina _ 1>

I
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Let I be an interval, f, g € Si(I) and a € I* for some k € N.
o 6|A[f](a)—A[“7](¢z)| 1< %(emaxa—mina _ 1>

I

(2] |A[f](a) - A[g](a)‘ < 3¢ . (maxa — mina)?.
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[ Jolele]

Let I be an interval, f, g € Si(I) and a € I* for some k € N.
o 6|A[f](a)—A[9](a)| 1< %(emaxa—mina _ 1>

I

0 |Alfl(a) — Aldl(a)| < 3£7¢ . (maxa — mina)?.
3

Consequently, for f,g € S;(I) we have
‘Am (a) — A[g](a)‘ < O(maxa — mina),
where ©: Ry — R, is defined by

O(z) := min (In(&5L), 287 . 2?).
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Theorem 2

Let K >0, f=(f1,...,fn) € SEP(I)" and a € I".
Consider the mapping Ay := (Al AUy [ — ™. Then,
for all k € N,

max Afﬂ (a) — min Aff](a) < L. 6% K - (maxa — mina)),

where ©: Ry — Ry is defined by

©(z) := min (In(&5L), 347 . z?).

Quasi-arithmetic Gauss-type iteration Pawel Pasteczka (UP)



Quantitive-type results
[e]e] 6]

Estimation of ©F

O(z) = min (ln(%) a7

3
The following properties are easy to check step-by-step:

Quasi-arithmetic Gauss-type iteration
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Estimation of ©F

©(z) = min (In(SH), 24

V4

The following properties are easy to check step-by-step:
@ (expo®oln)(y) < yTH for all y > 1;

Quasi-arithmetic Gauss-type iteration

Pawel Pasteczka (UP)



Quantitive-type results
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Estimation of ©* ©(z) = min (In(SH), e - ¢

The following properties are easy to check step-by-step:
@ (expo®oln)(y) < yTH for all y > 1;

© (expo®oln)k(y) < %Z_l < g +1forally>1;
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Estimation of ©* ©(z) = min (In(SH), e - ¢

The following properties are easy to check step-by-step:
Q@ (expo®oln)(y) < y—“ for all y > 1;
© (expoB oln)k(y) < 2_1 < g +1forally>1;
Q expoOfoln(y) < —g for y>1and k> [4+logyyl;
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Estimation of ©* ©(z) = min (In(SH), e - ¢

The following properties are easy to check step-by-step:
@ (expoB®oln)(y) < y—“ for all y > 1;
© (expo®oln)k(y) < ﬁ < g +1forally>1;
Q expo®” oln(y) < —(75 for y>1and k> [4+logyyl;
Q OF(z) <Inil < & forall z € [0,00) and k > [4+ 5 1;
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Estimation of ©* ©(z) = min (In(SH), e - ¢

The following properties are easy to check step-by-step:
@ (expoB®oln)(y) < y—“ for all y > 1;
© (expo®oln)k(y) < ﬁ < g +1forally>1;
Q expo®” oln(y) < —(75 for y>1and k> [4+logyyl;
Q OF(z) <Inil < & forall z € [0,00) and k > [4+ 5 1;

0 OF(d) = g2 - (359" for all k € N;
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Estimation of ©* ©(z) = min (In(SH), e - ¢

The following properties are easy to check step-by-step:
@ (expoB®oln)(y) < y—“ for all y > 1;
© (expo®oln)k(y) < ﬁ < g +1forally>1;
Q expo®” oln(y) < —(75 for y>1and k> [4+logyyl;
Q OF(z) <Inil < & forall z € [0,00) and k > [4+ 5 1;

0 OF(1p) = 577 - (3?;07@)2 for all k € N;

0 O%(x) < g - (%55°)

ok—[4+z/1n2]

for x >0, k >[4+ 5]
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Corollary 1

Let K >0, f=(f1,...,fn) € SIL(ip(I)” and a € I™.

Consider the mapping Ay := (Al AUy [ — ™. Then,
forallk > ko :=[4+ % - (maxa — mina)|,

. @ ok—k
max Aff](a) —mm Aff] (a) < (3—|—$e)K (=5 ’

Quasi-arithmetic Gauss-type iteration Pawel Pasteczka (UP)
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Corollary 1

Let K >0, f=(f1,..., fn) GSIL(ip(I)” and a € I™.
Consider the mapping Ay := (Al AUy [ — ™. Then,
forallk > ko :=[4+ % - (maxa — mina)|,

. e\ 2F—Fo
max Afcf](“) — mm Aff] (a) < (3+?e)K - (5°)

V.

Remark 1 of 3
This result provides an effective double-exponential estimation

of the difference.
Right-hand side of an inequality does not depend on f (only
implicitly, by K).

Quasi-arithmetic Gauss-type iteration Pawel Pasteczka (UP)
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Corollary 1

Let K >0, f=(f1,...,fn) € SIL(ip(I)” and a € I™.

Consider the mapping Ay := (Al AUy [ — ™. Then,
forallk > ko :=[4+ % - (maxa — mina)|,

. e\ 2F—Fo
max Afcf](“) — mm Aff] (a) < (3+?e)K - (5°)

Remark 2 of 3

By this corollary we can deliver an upper bound of iterates
which are sufficient to get appropriate precision of invariant
mean, which is very useful for numerical calculations.
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[e]o]e] )

Corollary 1

Let K >0, f=(f1,...,fn) € SIL(ip(I)” and a € I™.

Consider the mapping Ay := (Al AUy [ — ™. Then,
forallk > ko :=[4+ % - (maxa — mina)|,

. e\ 2F—Fo
max Afcf](“) — mm Aff] (a) < (3+$e)K - (5°)

Remark 3 of 3
In the original paper [Pasteczka, 2016] this result appears with a
different constants and with more complicated proof.

<
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Lemma 4

For every f € SL”’( I),

Lip(/")
2 If’( )|

1S¢(a)] < zeXp(Hf”/f’H1)5(a)4

[Rf(a)| < -0(a) Var(a)

y

Notice that these terms are O(8(a)3). Thus if I is bounded then
there exists a constant Ey € Ry such that

AVl(a) =@+ 1 Var(a) - ?ll((a)) + E;-6(a)® for all a € G .

n=1

In the paper [Pasteczka, 2016] the error was O(5(a)?) and
situation was completely different.

Quasi-arithmetic Gauss-type iteration Pawel Pasteczka (UP)
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Important technical lemma

Lemma 5

Let I be a bounded interval, f1,..., fn € SlLip(I). Then

ar; [fil(a "a
b ng(a)z( ) — 1 Var (J;f]((a)) ) +0(3(a))

for alla € U5, I*.
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Main result

Now we get the following

Theorem 3

Let £ = (f1,...,fn) € SEP(I)* and a € I™. Consider the
mapping Ajg = (AlAl AUl [ — ™ Then either A[f]( a)

18 a constant vector for some s € N or

Var AEHL(a) 1 fi (A (a))
[f] _ V
( f’(///(a)) )

lim

k=00 (Var A[f]( ))

where A is a unique Apg-invariant mean.
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[e]e] lele]e]

Main result

Now we get the following

Theorem 3

Let £ = (f1,...,fn) € SEP(I)* and a € I™. Consider the
mapping Ajg = (AlAl AUl [ — ™ Then either Af (a)

18 a constant vector for some s € N or

o VAR 1 o),
k—00 (VarAf“f](a))z 4 N (a))”

where A is a unique Apg-invariant mean.

To prove this theorem it is sufficient to:
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Main result

Now we get the following

Theorem 3

Let £ = (f1,...,fn) € SEP(I)* and a € I™. Consider the
mapping Ajg = (AlAl AUl [ — ™ Then either A[f]( a)

18 a constant vector for some s € N or

VarAfla) 1 f(A(a)
im ¢ =
B ety 1 ar)”

where A is a unique Apg-invariant mean.

.

To prove this theorem it is sufficient to: e scale the interval I to
obtain all functions in Sf P(Iy) [technical but straightforward],
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Main result

Now we get the following

Theorem 3

Let £ = (f1,...,fn) € SEP(I)* and a € I™. Consider the
mapping Ajg = (AlAl AUl [ — ™ Then either A[f]( a)
18 a constant vector for some s € N or

VarAfla) 1 f(A(a)
im ¢ =
B ety 1 ar)”

where A is a unique Apg-invariant mean.

.

To prove this theorem it is sufficient to: e scale the interval I to
obtain all functions in Sf P(Iy) [technical but straightforward],
e put a « A'[“f] (a) in the previous lemma,
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Main result

Now we get the following

Theorem 3

Let £ = (f1,...,fn) € SEP(I)* and a € I™. Consider the
mapping Ajg = (AlAl AUl [ — ™ Then either A[f]( a)
18 a constant vector for some s € N or

VarAfla) 1 f(A(a)
im ¢ =
B ety 1 ar)”

where A is a unique Apg-invariant mean.

.

To prove this theorem it is sufficient to: e scale the interval I to
obtain all functions in Sf P(Iy) [technical but straightforward],
e put a « A'[“f] (a) in the previous lemma, e take the limit.
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Example 1 [log — exp means)|

Let I =R, n €N, sc R and f = (f,

for s # 0, (k
T for s = 0.

, fn) be given by

Quasi-arithmetic Gauss-type iteration
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Example 1 [log — exp means)|

Let =R, neN, seR" and f = (f1,..., fn) be given by

folz) = {exp(sk ~x) for s #0, (k;

)z for s = 0.

For all a € R™ and k > ko(a) := [4+ 25 ||s|| o, - (maxa — mina)]
we have

k . k e ok—kq(a)
max A (a) —min Afy (0) < ey - (507 :

Quasi-arithmetic Gauss-type iteration Pawel Pasteczka (UP)
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Example 1 [log — exp means)|

Let =R, neN, seR" and f = (f1,..., fn) be given by

folz) = {exp(sk ~x) for s #0, (k;

T for s = 0.

For all a € R™ and k > ko(a) := [4+ 25 ||s|| o, - (maxa — mina)]
we have

k . k e ok—kq(a)
max A (a) —min Afy (0) < ey - (507 :

Moreover, if s and a € R™ are both nonconstant vectors then

Var Afcf]+1 (a) _ Var(s)
5 = .
k=00 (‘Var Aﬁ"] (a)) 4

Quasi-arithmetic Gauss-type iteration Pawel Pasteczka (UP)
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Example 2 [Power means / Holder means|

Let I =R,, n € N, s € R"” be a nonconstant vector, and
p = (p1,...,pn) be given by

Tk for s 0,
pi(z) = e (k=1,...,n)
In(z) for sy =0.

Quasi-arithmetic Gauss-type iteration Pawel Pasteczka (UP)
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Example 2 [Power means / Holder means|

Let I =R,, n € N, s € R"” be a nonconstant vector, and
p = (p1,...,pn) be given by

Tk for s 0,
pr() = £E0 o)
In(z) for sy =0.
Then
- Var Aﬁ:]rl(a) ~ Var(s)
2 = 2
k=00 (Var Aﬁ)](a)) 4-K(a)

where K is a unique A, -invariant mean.
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Further developments

Theorems above remain valid without requirement of Lipschitz
property of second derivatives.
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Further developments

Conjecture

Theorems above remain valid without requirement of Lipschitz
property of second derivatives.

| \

Conjecture

The property
i) (@) is a nonconstant vector for all s € N

is [in some sense| stable with respect to a.

For example: set of all such a-s is open (has other regularity
properties).

Quasi-arithmetic Gauss-type iteration Pawel Pasteczka (UP)



References
(1]

[ Borwein, J. M. and Borwein, P. B. (1987).
Pi and the AGM: A Study in the Analytic Number Theory
and Computational Complexity.
Wiley-Interscience, New York, NY, USA.

8 Matkowski, J. (1999).
Invariant and complementary quasi-arithmetic means.
Aequationes Math., 57(1):87-107.

@ Matkowski, J. (2006).
On iterations of means and functional equations.
In Iteration theory (ECIT '04), volume 350 of Grazer Math.
Ber., page 184-201. Karl-Franzens-Univ. Graz, Graz.

@ Mikusinski, J. G. (1948).

Sur les moyennes de la forme ¢~ qi(x)].
Studia Mathematica, 10(1):90-96.

Quasi-arithmetic Gauss-type iteration Pawel Pasteczka (UP)



References
(1]

[§ Pasteczka, P. (2016).
Iterated quasi-arithmetic mean type mappings.
Colloq. Math., 144(2):215-228.

[@ Pasteczka, P. (2018).
On the quasi-arithmetic Gauss-type iteration.
Aequationes Math., 92(6):1119-1128.

Quasi-arithmetic Gauss-type iteration Pawel Pasteczka (UP)



	Auxiliary Results
	Calculus of quasi-arithmetic mean

	Quantitive-type results
	Qualitive-type results
	References

