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Quasi-arithmetic mean

Quasi-arithmetic mean is defined For any continuous strictly
monotone function f : I → R (I – an open interval). Define a
quasi-arithmetic mean A[f ] :

⋃∞
n=1 I

n → I by

A[f ](a) := f−1

(
1
n

n∑
i=1

f(ai)

)
,

where n ∈ N and a ∈ In.
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Calculus of quasi-arithmetic mean

Let k ∈ N and a ∈ Rn. Let us denote the arithmetic mean of a
by a.

Let S(I) be a family of C2 functions defined on an interval I,
with nowhere vanishing first derivative and the second
derivative with [locally] bounded variation.
Roughly: smooth enought.
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Calculus of quasi-arithmetic mean

Theorem 1 ([Pasteczka, 2016], Lemma 4.1)

Let I be an interval, f ∈ S(I). For a given vector a ∈ In for
some n ∈ N one has

A[f ](a) = a+ 1
2 Var(a) · f

′′(a)

f ′(a)
+Rf (a) +R∗f (a),

where

Rf (a) :=
1

2n · f ′(a)

n∑
i=1

∫ ai

a
(ai − t)2df ′′(t),

R∗f (a) :=

∫ A[f ](a)

a

(
f(t)− f(A[f ](a))

)
f ′′(t)

f ′(t)2
dt.
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Calculus of quasi-arithmetic mean

Let

SK(I) :=
{
f ∈ S(I) :

∥∥f ′′/f ′∥∥∞ ≤ K};

SLip(I) :=
{
f ∈ S(I) : f ′′ is Lipschitz

}
;

SLipK (I) := SLip(I) ∩ SK(I).
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Calculus of quasi-arithmetic mean

Lemma 1 ([Pasteczka, 2016], Lemma 4.2)

For every f ∈ S1(I),

|Rf (a)| ≤ 1

6n
· exp(

∥∥f ′′/f ′∥∥
1
) ·

n∑
i=1

|ai − a|3 ,∣∣R∗f (a)
∣∣ ≤ (A[f ](a)− a)2 · exp(

∥∥f ′′/f ′∥∥
1
).

Lemma 2 ([Pasteczka, 2016], Lemma 4.3)

For every f ∈ S1(I),∣∣∣A[f ](a)− a
∣∣∣ ≤ 3 + 7e

6
(max a−min a)2.
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Lemma 3

Let I be an interval, f, g ∈ S1(I) and a ∈ Ik for some k ∈ N.

1 e|A
[f ](a)−A[g](a)| − 1 ≤ 1

2

(
emax a−min a − 1

)
,

2
∣∣A[f ](a)−A[g](a)

∣∣ ≤ 3+7e
3 · (max a−min a)2.

Consequently, for f, g ∈ S1(I) we have∣∣∣A[f ](a)−A[g](a)
∣∣∣ ≤ Θ(max a−min a),

where Θ: R+ → R+ is defined by

Θ(x) := min
(

ln( e
x+1
2 ), 3+7e

3 · x2
)
.
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Theorem 2

Let K > 0, f = (f1, . . . , fn) ∈ SLipK (I)n and a ∈ In.
Consider the mapping A[f ] := (A[f1], . . . , A[fn]) : In → In. Then,
for all k ∈ N,

maxAk
[f ](a)−minAk

[f ](a) ≤ 1
K ·Θ

k(K · (max a−min a)),

where Θ: R+ → R+ is defined by

Θ(x) := min
(

ln( e
x+1
2 ), 3+7e

3 · x2
)
.
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Estimation of Θk Θ(x) = min
(

ln(e
x+1
2 ), 3+7e

3 · x
2
)

The following properties are easy to check step-by-step:

1 (exp ◦Θ ◦ ln)(y) ≤ y+1
2 for all y > 1;

2 (exp ◦Θ ◦ ln)k(y) ≤ y+2k−1
2k

< y
2k

+ 1 for all y > 1;
3 exp ◦Θk ◦ ln(y) ≤ 17

16 for y > 1 and k ≥ d4 + log2 ye;
4 Θk(x) ≤ ln 17

16 <
1
10 for all x ∈ [0,∞) and k ≥ d4 + x

ln 2e;
5 Θk( 1

10) = 3
3+7e · (

3+7e
30 )2

k for all k ∈ N;

6 Θk(x) ≤ 3
3+7e ·

(
3+7e
30

)2k−d4+x/ ln 2e
for x ≥ 0; k ≥ d4 + x

ln 2e.
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Corollary 1

Let K > 0, f = (f1, . . . , fn) ∈ SLipK (I)n and a ∈ In.
Consider the mapping A[f ] := (A[f1], . . . , A[fn]) : In → In. Then,
for all k ≥ k0 := d4 + K

ln 2 · (max a−min a)e,

maxAk
[f ](a)−minAk

[f ](a) ≤ 3
(3+7e)K ·

(
3+7e
30

)2k−k0
.
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Corollary 1

Let K > 0, f = (f1, . . . , fn) ∈ SLipK (I)n and a ∈ In.
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for all k ≥ k0 := d4 + K

ln 2 · (max a−min a)e,

maxAk
[f ](a)−minAk

[f ](a) ≤ 3
(3+7e)K ·

(
3+7e
30

)2k−k0
.

Remark 1 of 3
This result provides an effective double-exponential estimation
of the difference.
Right-hand side of an inequality does not depend on f (only
implicitly, by K).

Quasi-arithmetic Gauss-type iteration Paweł Pasteczka (UP)



Auxiliary Results Quantitive-type results Qualitive-type results References

Corollary 1

Let K > 0, f = (f1, . . . , fn) ∈ SLipK (I)n and a ∈ In.
Consider the mapping A[f ] := (A[f1], . . . , A[fn]) : In → In. Then,
for all k ≥ k0 := d4 + K

ln 2 · (max a−min a)e,

maxAk
[f ](a)−minAk

[f ](a) ≤ 3
(3+7e)K ·

(
3+7e
30

)2k−k0
.

Remark 2 of 3
By this corollary we can deliver an upper bound of iterates
which are sufficient to get appropriate precision of invariant
mean, which is very useful for numerical calculations.
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Corollary 1

Let K > 0, f = (f1, . . . , fn) ∈ SLipK (I)n and a ∈ In.
Consider the mapping A[f ] := (A[f1], . . . , A[fn]) : In → In. Then,
for all k ≥ k0 := d4 + K

ln 2 · (max a−min a)e,

maxAk
[f ](a)−minAk

[f ](a) ≤ 3
(3+7e)K ·

(
3+7e
30
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.

Remark 3 of 3
In the original paper [Pasteczka, 2016] this result appears with a
different constants and with more complicated proof.
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Lemma 4

For every f ∈ SLip1 (I),

|Rf (a)| ≤ Lip(f ′′)

2 |f ′(a)|
· δ(a) Var(a)

|Sf (a)| ≤ α2

4
exp(

∥∥f ′′/f ′∥∥
1
)δ(a)4.

Notice that these terms are O(δ(a)3). Thus if I is bounded then
there exists a constant Ef ∈ R+ such that

A[f ](a) = a+ 1
2 Var(a) · f

′′(a)

f ′(a)
± Ef · δ(a)3 for all a ∈

∞⋃
n=1

In .

In the paper [Pasteczka, 2016] the error was O(δ(a)2) and
situation was completely different.
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Important technical lemma

Lemma 5

Let I be a bounded interval, f1, . . . , fn ∈ SLip1 (I). Then

Varj

(
A[fj ](a)

)
Var(a)2

= 1
4 Varj

(f ′′j (a)

f ′j(a)

)
+O(δ(a))

for all a ∈
⋃∞

k=1 I
k.
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Main result

Now we get the following

Theorem 3

Let f = (f1, . . . , fn) ∈ SLip(I)n and a ∈ In. Consider the
mapping A[f ] := (A[f1], . . . , A[fn]) : In → In. Then either As

[f ](a)
is a constant vector for some s ∈ N or

lim
k→∞

VarAk+1
[f ] (a)(

VarAk
[f ](a)

)2 =
1

4
Varj

(f ′′j (M (a))

f ′j(M (a))

)
,

where M is a unique A[f ]-invariant mean.

To prove this theorem it is sufficient to: scale the interval I to
obtain all functions in SLip1 (I0) [technical but straightforward],
put a← Ak

[f ](a) in the previous lemma, take the limit.
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Example 1 [log− exp means]

Let I = R, n ∈ N, s ∈ Rn, and f = (f1, . . . , fn) be given by

fk(x) =

{
exp(sk · x) for sk 6= 0,

x for sk = 0.
(k = 1, . . . , n)

For all a ∈ Rn and k ≥ k0(a) := d4 + 1
ln 2 ‖s‖∞ · (max a−min a)e

we have

maxAk
[f ](a)−minAk

[f ](a) ≤ 3
(3+7e)‖s‖∞

·
(
3+7e
30

)2k−k0(a)

.

Moreover, if s and a ∈ Rn are both nonconstant vectors then

lim
k→∞

VarAk+1
[f ] (a)(

VarAk
[f ](a)

)2 =
Var(s)

4
.
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Example 2 [Power means / Hölder means]

Let I = R+, n ∈ N, s ∈ Rn be a nonconstant vector, and
p = (p1, . . . , pn) be given by

pk(x) =

{
xsk for sk 6= 0,

ln(x) for sk = 0.
(k = 1, . . . , n)

Then

lim
k→∞

VarAk+1
[p] (a)(

VarAk
[p](a)

)2 =
Var(s)

4 ·K(a)2
,

where K is a unique A[p]-invariant mean.
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Further developments

Conjecture
Theorems above remain valid without requirement of Lipschitz
property of second derivatives.

Conjecture
The property

As
[f ](a) is a nonconstant vector for all s ∈ N

is [in some sense] stable with respect to a.

For example: set of all such a-s is open (has other regularity
properties).
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